Analysis 2
 30 April 2024

Warm-up: Is $y=\frac{1}{3} x^{3}-4 x$ concave up, concave down, or neither at $x=2$?

Seeing f^{\prime} and $f^{\prime \prime}$ in graphs

Monotonicity

- If $f^{\prime}>0$ then f is increasing,
- If $f^{\prime}<0$ then f is decreasing.
- A critical point is an x-value* where f^{\prime} is zero or doesn't exist.

Concavity

- If $f^{\prime \prime}>0$ then f is concave up,
- If $f^{\prime \prime}<0$ then f is concave down.
- An inflection point is an x-value* where $f^{\prime \prime}$ changes sign.
* The x-value must to be in the domain of f.

For $f(x)=\frac{1}{3} x^{3}-4 x$,

f' kells us
$f^{\prime \prime}$ Eells us

For $f(x)=\frac{1}{3} x^{3}-4 x$,

f' bells us

$f^{\prime \prime}$ Cells us

Task: Find (a) the critical points and (b) the inflection points of

$$
f(x)=\frac{3}{20} x^{5}-x^{4}+2 x^{3}-5 x+7 .
$$

Possible hints:

$$
\begin{aligned}
\frac{3}{4} x^{4}-4 x^{3}+6 x^{2}-5 & =\frac{1}{4}\left(x^{2}-2 x-2\right)\left(3 x^{2}-10 x+10\right) \\
3 x^{3}-12 x^{2}+12 x & =3 x\left(x^{2}-4 x+4\right) \\
9 x^{2}-24 x+12 & =3(x-2)(3 x-2) \\
18 x-24 & =6(3 x-4)
\end{aligned}
$$

Answer: critical points: $x=1-\sqrt{3}$ and $x=1+\sqrt{3}$ infection points: $x=0$ only

Task: Find (a) the critical points and (b) the inflection points of

$$
f(x)=\frac{3}{20} x^{5}-x^{4}+2 x^{3}-5 x+7
$$

Although $f^{\prime \prime}(2)=0$, there is no inflection point there ($f^{\prime \prime}$ does not change sign).

Celebration of Knowledge

Exam 1 is next week.

Topics:

- calculating derivatives
- Power Rule, Product Rule, Chain Rule, etc.
- tangent lines
- monotonicity (increasing vs. decreasing) and critical points
- concavity (concave up vs. concave down) and infection points
- extrema (minima and maxima)

Exam Review
Task 1: Find the slope of the tangent line to $y=\cos (8 x)$ at $x=\frac{\pi}{3}$. This is $f^{\prime}(\pi / 3)$.
(No $\ldots=0$. No $\ldots>0$. Just plug $\pi / 3$ into derivative and stop.)
Task 2: Give an equation for the tangent line to $y=\cos (8 x)$ at $x=\frac{\pi}{3}$. The format $y-y_{0}=m\left(x-x_{0}\right)$ is easier than $y=a x+b$.

Task 3: Give the derivative of $f(x)=x^{3} \sqrt{9+\sin \left(x^{2}\right)}$ as a function of x.
Start with the Product Rule.
We will also need the Chain Rule twice (and Sum once).

